Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory

نویسندگان

چکیده

Time-dependent orbital-free density functional theory (TD-OFDFT) is an efficient ab-initio method for calculating the electronic dynamics of large systems. In comparison to standard TD-DFT, it computes only a single state regardless system size, but requires additional time-dependent Pauli potential term. We propose nonadiabatic and nonlocal whose main ingredients are particle current densities. Our calculations optical spectra metallic semiconductor clusters indicate that TD-OFDFT performs accurately systems semiquantitatively semiconductors. This work opens door wide applicability nonequilibrium electron electron-nuclear materials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic kinetic energy potential for orbital-free density functional theory.

A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a corre...

متن کامل

Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.

Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual an...

متن کامل

Orbital-corrected orbital-free density functional theory.

A new implementation of density functional theory (DFT), namely orbital-corrected orbital-free (OO) DFT, has been developed. With at most two non-self-consistent iterations, OO-DFT accomplishes the accuracy comparable to fully self-consistent Kohn-Sham DFT as demonstrated by its application on the cubic-diamond Si and the face-centered-cubic Ag systems. Our work provides a new impetus to furthe...

متن کامل

Nonlocal orbital-free kinetic energy density functional for semiconductors

We propose a nonlocal kinetic energy density functional KEDF for semiconductors based on the expected asymptotic behavior of its susceptibility function. The KEDF’s kernel depends on both the electron density and the reduced density gradient, with an internal parameter formally related to the material’s static dielectric constant. We determine the accuracy of the KEDF within orbital-free densit...

متن کامل

Angular-momentum-dependent orbital-free density functional theory.

Orbital-free (OF) density functional theory (DFT) directly solves for the electron density rather than the wave function of many electron systems, greatly simplifying and enabling large scale first principles simulations. However, the required approximate noninteracting kinetic energy density functionals and local electron-ion pseudopotentials severely restrict the general applicability of conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.104.235110